Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries
نویسندگان
چکیده
We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers' method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g-1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g-1 is obtained at a high current density of 600 mA g-1, and the electrode recovers a capacity of 230 mAh g-1 when the current density is reset to 15 mA g-1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications.
منابع مشابه
Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries
A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced sel...
متن کاملVanadium Oxide/Graphene Nanoplatelet as a Cathode Material for Mg-Ion Battery
The aim of the present work is to introduce a high performance cathode for magnesium-ion batteries. A simple ball mill process is employed to synthesize (V2O5)1−x (Graphene Nanoplatelets (GNP))x nanocomposite, (where x = 0, 5, 10, 15, 20 and 25 wt.% GNP). The synthesized samples are characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) technique, impedance spectroscopy...
متن کاملOxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries
Exploring high performance and environment-friendly electrode materials is highly desirable for the sustainable Li-ion batteries (LIBs) system. In this study, a facile approach of the modified Hummers’ method combining with special thermal reduction was proposed to synthesize nanostructured reduced graphene oxide (RGO) with abundant oxygen-containing functional groups. The resultant RGO showed ...
متن کاملGraphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermedi...
متن کاملGraphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries
LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 sp...
متن کامل